<img height="1" width="1" alt="" style="display:none" src="https://www.facebook.com/tr?id=940171109376247&amp;ev=PageView&amp;noscript=1">

Dedicated to Teachers

The Teacher's Role in Math Fact Fluency


In classrooms where students are successfully learning their number facts, you'll see teachers listening and responding to student thinking in ways that encourage and promote their flexibility with numbers. This includes creating a classroom culture that encourages students to take risks as they attempt to put numbers together and pull them apart, acknowledges that mistakes are opportunities to learn, and celebrates the mathematical insights that come from sharing and discussing strategies for operating with numbers. When this classroom culture is in place, there is a buzz in the room, with children doing, thinking, talking, and listening like mathematicians making sense of their work.

Download a sample chapter of No More Math Fact Frenzy


The role of the teacher in building students’ number sense and fluency with number combinations includes:

  1. Setting learning goals and posing “just-right” problems.
  2. Asking questions to help students build on what they know as they work together to solve problems.
  3. Using different students’ ideas and strategies in a whole-class discussion that builds connections across these ideas and strategies.

These approaches are consistent with the design of a student-centered lesson (Smith and Stein 2011) that supports student thinking and reasoning and helps build the strong conceptual foundations that are important for supporting fluency.

Let’s look more closely at each aspect of the teacher’s role and consider how to plan for this kind of instruction.

Setting Learning Goals and Posing “Just-Right” Problems

Understanding specifically what students know and can do allows a teacher to use a learning progression to identify a goal and pose a “just-right” problem. For instance, a foundational idea is cardinality, the idea that the last number counted represents the total quantity of the set, so an activity that involves counting and stating “how many” would be appropriate.

When thinking about a goal for developing fluency, consider a learning goal rather than just a performance goal. While you may want students to demonstrate their learning during the lesson and perhaps on an exit ticket at the end of the lesson, student learning rather than student performance should be the driver. This can support a culture of sharing and risk-taking rather than one of anxiety and unproductive competition.


Asking Questions

  • What do you notice?
  • What do you notice?
  • Can you tell the story in your own words?
    Is your answer reasonable?

These simple questions can help empower students to look for and explore arithmetic properties, patterns, and relationships. They communicate that students have ideas worth talking about. While planning for a set of problems, teachers can anticipate what key ideas and strategies might arise and plan questions that might help students if they are stuck.

It can be challenging to restrain ourselves from correcting students when they make mistakes, but here too, questions can help. We have found that students often self-correct if given the opportunity to explain their thinking. Sometimes asking students “How do you know?” is sufficient to uncover both what they know and what is incorrect.


Using Students’ Ideas and Strategies to Build Connections

After students have worked independently and in small groups, gather the whole class to facilitate a discussion based on your learning goal and what strategies, ideas, and struggles you have observed.

Discussions at the end of a lesson can help students consolidate their learning and push their mathematical understanding and use of efficient strategies. By encouraging student-to-student talk, you are also encouraging them to use their own “funds of knowledge” to do math and communicate their thinking.

The above has been adapted from No More Math Fact Frenzy. Learn more at Heinemann.com

Download a sample chapter of No More Math Fact Frenzy

glyph-logo_May2016Follow us on Instagram @heinemannpub to stay up to date on the latest books, your favorite authors, and upcoming events!

Linda Ruiz Davenport is the Director of K–12 Mathematics for Boston Public Schools and supports mathematics teaching and learning district-wide.

Follow her on Twitter @LindaD_BPSMath

Connie S. Henry is an Assistant Director of K–12 Mathematics for Boston Public Schools. She has taught and coached math for many years.

Douglas H. Clements is the Kennedy Endowed Chair in Early Childhood Learning and Distinguished University Professor at the University of Denver.

Follow him on Twitter @DHClements

Julie Sarama is the Kennedy Endowed Chair in Innovative Technologies and Distinguished University Professor at the University of Denver. 

Follow her on Twitter @JulieSarama

Topics: Mathematics, Not This But That, No More Math Fact Frenzy, Linda Ruiz Davenport, Julie Sarama, Connie S. Henry, Douglas H. Clements

Date Published: 07/09/19

Related Posts

How to Structure Guided Math Workshop Groups

What is a Guided Math Group? Guided math groups are small, fluid, and flexible groups of students that yo...
Aug 29, 2023 6:00:00 AM

The Importance of Minilessons in Math Workshop

What is a Minilesson? A minilesson is a brief, focused, opportunity to teach the big ideas of that day’s ...
Aug 15, 2023 6:30:00 AM

Understanding 3 Key Elements of Balanced Assessment in Math Workshop

Balanced assessment views assessment as a scrapbook rather than a snapshot. The scrapbook can include the...
Aug 1, 2023 7:00:00 AM